Stirling polynomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Chromatic Polynomials Involving Stirling Numbers

The Stirling numbers of the second kind, denoted S(n, k), are the number of ways to partition n distinct objects into k nonempty subsets. We use the notation [n] = {1, 2,. . ., n} and sometimes refer to the subsets as blocks. The initial conditions are defined as: S(0, 0) = 1, S(n, 0) = 0, for n ≥ 1, and S(n, k) = 0 for k > n. We also have S(n, 2) = 2 n−1 − 1 and S(n, n − 1) = n 2. The numbers ...

متن کامل

Jacobi-Stirling polynomials and P-partitions

We investigate the diagonal generating function of the Jacobi-Stirling numbers of the second kind JS(n+ k, n; z) by generalizing the analogous results for the Stirling and Legendre-Stirling numbers. More precisely, letting JS(n + k, n; z) = pk,0(n) + pk,1(n)z + · · ·+ pk,k(n)z, we show that (1− t)3k−i+1 ∑ n≥0 pk,i(n)t n is a polynomial in t with nonnegative integral coefficients and provide com...

متن کامل

On Generalized Stirling Numbers and Polynomials

In this paper we prove that some results concerned the generalized Stirling numbers are the consequence of the results of Toscano and Chak. The new explicit expressions for generalized Stirling numbers are also given.

متن کامل

A finite difference approach to degenerate Bernoulli and Stirling polynomials

Starting with divided di erences of binomial coe cients, a class of multivalued polynomials (three parameters), which includes Bernoulli and Stirling polynomials and various generalizations, is developed. These carry a natural and convenient combinatorial interpretation. Some particular calculations are done and several factorization results are proven and conjectured.

متن کامل

Exponential Polynomials, Stirling Numbers, and Evaluation of Some Gamma Integrals

and Applied Analysis 3 and continuing like that to S8. For large n this method is not convenient. However, later that year Ligowski 4 suggested a better method, providing a generating function for the numbers Sn: e z ∞ ∑ k 0 e k! ∞ ∑ k 0 ∞ ∑ n 0 k k! z n! ∞ ∑ n 0 Sn z n! . 2.4 Further, an effective iteration formula was found Sn n−1 ∑ j 0 ( n − 1 j ) Sj 2.5 by which every Sn can be evaluated st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1978

ISSN: 0097-3165

DOI: 10.1016/0097-3165(78)90042-0